

AME Coils and Caps Test Coupon

C

AME-Elements Workflow with optimization

- from Simulation to full optimized & functional electronics
 - Without tuning manually

Inside the Coils and Caps coupon-Design

• Design Insights of all single elements in the coupon sample

• Examples for 3D-Coil-Design variations

AME-Coil	comments	$\left \left\langle \right\rangle \right\rangle \left\langle \right\rangle$
	d = 2.2mm, l = 5.4 mm N = 8; wires 0.3 mm	
L6 0000	d= 2.2mm, l = 4.2 mm N = 5; wires 0.3 mm	
L7	d = 2.2mm, l = 3.4 mm N = 5; wires 0.3 mm	
L8 M	d = 3mm, l = 2.5 mm N = 5; wires 0.3 mm	
d	$L \approx \frac{\mu_0 \mu_r N^2 A}{l}$	

0

0

• Examples for 3D-Capacitor-Design variations

AME-Cap	comments	
C5	6x6 mm 36 plates, 1 mm thick	
^{C4}	6x6 mm 18 plates 2 mm thick	
C3	5x5 mm 18 plates 1 mm thick	
C2	4x4 mm 18 plates 1 mm thick	
C1	3x3 mm 18 plates 2 mm thick	

$$C = \varepsilon_0 \, \varepsilon_r \, \frac{A}{d}$$

 \cap

0

0

0

$$\begin{bmatrix} A \\ & \varepsilon_r \end{bmatrix}$$

$$C = \varepsilon_0 \, \varepsilon_r (N-1) \frac{A}{d}$$

- Deep insights
- High z-axis conductivity relevance

2000.00µm

250.00µr

Measuring results For Coils and Caps coupon-Design

Coils and Caps Coupon - measured

Measurement results (with LCR Bridge)

• Verification method different by usecase and frequency

0

0

Coils and Caps Coupon - measured

- Measurement for 3D-Coil-Design variations
- Verification method different by usecase and frequency

AME-Cap	Measurement [pF] @100 kHz
C5	185 pF
C4	325 pF
C3	510 pF
C2	730 pF
C1	1420 pF

Measurement with LCR Bridge

Cross section of a plate capacitor design (by WIWeB)

4.8 ni

Single Coils and Caps Samples From Coupon-Design

• Digital designs to implement in your design (simulated with epsilon r = 2,79)

C2 462 pF

C1 171 pF

C3 299pF

C4 661 pF 0

0

C5 1.35 nF

L6 23nH

L3 76nH

L7 25nH

L8 27nH

Simulation results For Coils and Caps coupon-Design

• Expample for one AME-Coil L1

 $L1 = 3.15 \mu H$ Measured 3.5 μH • CST-Model for Simulation

Induct. [H] ↑ @

0

0

•

• Expample for one AME-Coil L2

Expample for one AME-Coil L3

 $L2 = 3.13 \mu H$ Measured 3.6 μH

0

0

Induct.

[H]

• Expample for one AME-Coil L4

L4 = 42 nH Measured 8 µH (to be checked)

L5 = 23 nH Measured 8 µH (to be checked)

0

0

J.A.M.E.S

Induct.

Expample for one AME-Coil L7

 $L7 = 25 nH_{1}$

0

Measured 7

L6 = 23.9 nHMeasured 7 µH (to be checked)

Induct. [H] 🕇

0

0

0

• Expample for one AME-Coil L8

L7 = 27 nH Measured 7µH (to be checked)

Induct. [H]

Coils and Caps Coupon - Simulation

• Simulate 3D-Coil & Caps Design variations

J.A.M.E.S

AME-Coil	Simulation @100 kHz	AME-Coil	Simulation	AME-Cap	DC- Simulatio
	3.15 μF	L5 00000	25 nH	C5	171 pF
L2	3.13 μF		23 nH	C4	462 pF
L3	76 nH	L7	25 nH	C3	299 pF
	42 nH	L8 _	27 nH	C2	661 pF
				C1	1.35 nF

Ongoing and additional investigations

 Potential contribution activities by

> • Academia (e.g. Bachelor- / Master-Thesis)

 Industry experts with AME-strategy

Comparison to Conventional COTS Elements

AME Capacitor and conventional COTS

- By example AME Design C1 and custom of the shelf 1400 pF Multilayer Ceramic Capacitor MLCC by KEMET
- Typical applications
 - Frequency converters, industrial and high-end power supplies, solar inverters
- What to take into account?

C1 ~ 1.42 nF @ 100 kHz

No further characterization available

SIMULATION characterization essential

Table TA - 1812 Product Ordering Codes, Ratings, and Package Quantities								
KEMET Part Number ¹	Capacitance C			Number of Chips	Thickness mm (inch)	Typical Average Piece Weight (g)	Tape & Reel Quantity	
		Cap Code	Voltage				7" Tape & Reel	13" Tape & Reel
C1812(a)142(b)ZGLC(c)	1.4 nF	142	2,500 V		5.1 (0.200) ±0.4 (0.016)	0.30	200	850

AME Capacitor and conventional COTS

- By example AME Design C5 and custom of the shelf AC rated ceramic condensator 470 pF SMD by Murata
- Typical applications
 - Switching power supplies, noise suppression filters etc.
- What to take into account?

C3 ~ 510 pF @ 100 kHz

No further characterization available

SIMULATION characterization essential

Full characterization available

Minimum quantity procurement 2000

Outlook

Outlook

- Further Designs for 3D AME-printed lumped elements will appear (e.g. for Filter building blocks)
- The ability to create freshaped passive lumed elements for
 - Individual formfactors
 - Miniaturised applications
 - Avoiding assembly
 - Technical reasons from DC to RF

Show an upcoming trend and usecase for additively manufacturing electronics

- Sustainability reasons could play some relevant role
 - Needs-based Production of components in individual amounts can help to avoid production for waste
- Increase Effords to reach out a product level use case for 3D AME-printed elements
 - More characteristics data have to be provided
 - Simulation of AME-elements will play a major role for the future
 - The existing performance gap between simulation and realization results has to be bridged
 - In accordance to the overall AME long term stability issues

Be part of the AME Revolution!

www.j-ames.com

FOLLOW US ON

0

0

С

Q

0

J.A.M.E.S GmbH

0

0

0

0

0

JAMES_GmbH

JAMES_Gmb

JAMES_Gmbl